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Abstract—Background: Common-mode noise degrades car-
diovascular signal quality and diminishes measurement
accuracy. Filtering to remove noise components in the
frequency domain often distorts the signal. Method: Two
adaptive noise canceling (ANC) algorithms were tested to
adjust weighted reference signals for optimal subtraction
from a primary signal. Update of weight w was based upon
the gradient term of the steepest descent equation:
r ¼ @n=@w ¼ @E½e2k�=@wk, where the error e is the difference
between primary and weighted reference signals. � was
estimated from De2 and Dw without using a variable Dw in the
denominator which can cause instability. The Parallel Com-
parison (PC) algorithm computed De2 using fixed finite
differences ± Dw in parallel during each discrete time k. The
ALOPEX algorithm computed De2Æ Dw from time k to k + 1
to estimate �, with a random number added to account for
De2 Æ Dw fi 0 near the optimal weighting. Results: Using
simulated data, both algorithms stably converged to the
optimal weighting within 50–2000 discrete sample points k
even with a SNR = 1:8 and weights which were initialized
far from the optimal. Using a sharply pulsatile cardiac
electrogram signal with added noise so that the SNR = 1:5,
both algorithms exhibited stable convergence within 100 ms
(100 sample points). Fourier spectral analysis revealed
minimal distortion when comparing the signal without added
noise to the ANC restored signal. Conclusions: ANC algo-
rithms based upon difference calculations can rapidly and
stably converge to the optimal weighting in simulated and
real cardiovascular data. Signal quality is restored with
minimal distortion, increasing the accuracy of biophysical
measurement.

Keywords—Adaptive noise cancellation, Cardiovascular,

Mean squared error, Noise cancellation, Steepest descent.

BACKGROUND

Cardiac and other biomedical signals are often
degraded by noise, motion artifact, and proximate
bioelectric sources.6,16,30,31 These extraneous compo-
nents, which can reduce the signal to noise ratio
(SNR) to 1 or less, decrease the quality of the bio-
logical signal to the extent that quantitative and even
qualitative measurements become difficult if not
impossible to make. Subtle features in the biological
signal of interest, whether they are of short time
duration or of low amplitude or both, are often
masked by both broadband noise and low frequency
motion artifact. Efforts to reduce noise and motion
artifact can increase the complexity and cost of the
transduction device, while decreasing its utility, ease
of use, and the rapidity with which it can be em-
ployed for recording of medical cardiovascular sig-
nals.11 Following data recording, frequency domain
filters are often used to remove noise and motion
artifact; however, the frequency content of signal and
noise often overlap, so that either portions of the
noise content remain and/or portions of the fre-
quency content of the signal are removed.2,3 The
latter results in distortion of the signal and loss of
information content.2,3 Noise cancellation25,27–29 is
the process whereby common-mode noise and arti-
fact, which is the same on all input sensors except
for differences in amplitude and perhaps in phase,
are removed by subtractive methods. The primary
input is a recording of the actual signal of interest,
plus noise, much of which is often common-mode in
biological recordings. The reference input or inputs
consist of noise which is uncorrelated with the pri-
mary signal and contains common-mode compo-
nents, and may contain additional components that
are not common mode.24,26
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In previous work, cancellation of common-mode
artifact with a constant weighting was used to im-
prove signal quality.10 Two inputs were incorporated
into the device: one from a primary and one from a
reference piezoelectric sensor, with the piezoelectric
transducers operating in compression mode. The pri-
mary signal consisted of a blood pressure tonometry
signal which was acquired noninvasively by recording
above the palpable radial artery pulse. The reference
signal was acquired simultaneously by recording from
a portion of the wrist lacking a palpable pulse. The
common-mode noise components included mostly
motion artifacts delivered to the piezoelectric trans-
ducers by patient movement and ambient vibrations,
and from line frequency interference. Using a 1:1
subtraction, or some other fixed subtraction of refer-
ence from primary signals, most of the common-mode
components were removed and the pulse restored.
Yet, further measurement showed the best weighting
for subtraction of common-mode noise was time-
varying for this device. An adaptive algorithm was
developed using fixed weight update increments for
adjustment of the best weighting of the reference
signal.9 The performance index for weight adjustment
was the estimated mean squared error (MSE). The
weights were updated by only a small fixed amount
during each adaptive iteration to simplify the process
and stabilize the weight adjustment. However, the
response to any rapid changes in common-mode
characteristics that occurred was relatively slow.
Herein, we study two gradient descent adaptive
algorithms for cancellation of the additive noise
present on cardiovascular signals.

METHOD

Design of Equations for Adaptive Noise Cancellation
(ANC)

Adaptive filtering methods are useful for cancella-
tion of correlated signal components.25,27–29 The pro-
cess is called adaptive noise cancellation (ANC). When
common-mode noise is present on the recorded bio-
medical signal d (termed the primary or desired signal)
and it is also on a reference signal x, then the reference
signal can be subtracted from the primary to remove
the common-mode noise. If the common-mode noise is
in-phase and the same amplitude on both signals, and
if it is time-invariant in both phase and amplitude, it
would be completely cancelled by 1:1 subtraction:

e ¼ d� x ð1Þ

where e is the error signal. The error signal is a
measure of the similarity between the desired and

reference signals, and can be used to develop a perfor-
mance criterion, or index, for determining how well the
common-mode noise is cancelled by the subtraction.
The ‘desired’ signal d is so termed because the reference
signal is weighted to maximize its similarity to d.25,27–29

If the common-mode noise is in phase but not exactly
1:1 in amplitude on both signals, and is time invariant
in both phase and amplitude, then a scaling factor or
weight w can be used to best adjust the reference signal
for subtraction from the primary signal:

e ¼ d� w � x ð2aÞ

e ¼ d� y ð2bÞ

where y is termed the output signal.26 For example, for
complete cancellation of common-mode noise that is
twice the amplitude on d as compared with x, the
optimal weight (w*) would be 2. When the optimal
weighting is constant over time, it can be tuned man-
ually either in hardware or software for best noise
cancellation. A problem arises however when the
optimal weighting is time varying, i.e., the amplitude
ratio of common-mode noise on the primary and ref-
erence varies over time. If we use the mean squared
error (MSE), symbolized by n, as the performance in-
dex for best weighting:

n ¼ E½e2� ð3Þ

where E is the expectation operator, then a plot of n
versus w would be parabolic with the optimal weight-
ing w* occurring at the minimum (Fig. 1). For para-
bolic functions, the equation of steepest descent can be
used for weight update from any arbitrary starting
point25:

wkþ1 ¼ wk � lrk ð4Þ
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FIGURE 1. Schematic of the method of parallel comparison
(PC). The squared error is used as the performance index.
Adaptation is based upon finite differences in weighting.
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where w is the weight used to adjust the reference
signal amplitude during discrete time k, l is a con-
vergence coefficient, and the gradient �k is given by:

rk ¼ @E½e2k�=@wk ¼ @nk=@wk ð5Þ

with @ denoting the partial derivative. Since the
expectation operator is taken over all time, for prac-
tical implementation the gradient must be estimated.
One way to do this is to use the difference equation27:

rk � De2k=Dwk ð6Þ

which is the squared error difference divided by the
weight difference at time k. Therefore substituting Eq.
(6) into Eq. (4) and expanding the differences:

wkþ1 ¼ wk � lDe2k=Dwk ð7aÞ

De2k ¼ e2k � e2k�1 ð7bÞ

Dwk ¼ wk � wk�1 ð7cÞ

Equation (7) provides the direction (sign) for weight
update automatically. A major problem with estimat-
ing the gradient using Eq. (7a) is that the term in the
denominator Dwk can approach zero, which will make
the weight update subject to instability. One way to
increase stability is to drop the Dwk from the denomi-
nator using the following paradigm:

rk � De2k ð8aÞ

s ¼ sign ðDwkÞ ð8bÞ

wkþ1 ¼ wk � l � s � ðDe2kÞ ð8cÞ

Use of Eq. (8) will result in more rapid convergence far
from the optimal weighting and slower convergence
near the optimal weighting as compared to Eq. (7).

An alternative method for computation of ek, rather
than determining error difference between successive
times, is to make the computation at each discrete time
k based upon finite differences9,10,27:

eþk ¼ dk � ðwk þ xÞ � xk ð9aÞ

e�k ¼ dk � ðwk � xÞ � xk ð9bÞ

Dek ¼ eþk � e�k ð9cÞ

Dwk ¼ 2x ð9dÞ

wkþ1 ¼ wk � l � ½ðe�k Þ
2 � ðeþk Þ

2�=2x ð9eÞ

where x is a constant, finite difference in weighting
used to compute the error at discrete time k. Thus

the sign of ½ðe�k Þ
2 � ðeþk Þ

2� determines the direction of
weight update. The concept is illustrated in Fig. 1:
discrete changes ±x in weight w shift the error so
that the gradient can be estimated based upon
½ðeþk Þ

2 � ðe�k Þ
2�=2x. We term this adaptive method the

parallel comparison or PC algorithm, because errors
based on finite differences in weight are computed in
parallel at discrete time k.

A second method to compute the weight update
using difference equations is to include Dwk in the
numerator rather than in the denominator, so that
from Eq. (4):

wkþ1 ¼ wk � lDe2k � wk ð10Þ

This method has the advantage, as compared to Eq.
(8), of automatic computation of the sign of the weight
update from the product of De2k with Dwk, while still
maintaining stability when Dw fi 0. However, the ef-
fect of having Dwk in the numerator will be as follows.
The speed of convergence when w is far from the
optimal weighting will be further increased as com-
pared with Eq. (8), because both Dek

2 and Dwk will be
large per unit step. The speed of convergence when w is
near the optimal weighting will be diminished as
compared with Eq. (8), because Dek

2 and Dwk will be
small per unit step. Yet, convergence speed can be
improved as w! w� by adding a random number to
the update equation:

wkþ1 ¼ wk � lDe2k � Dwk þ R ð11Þ

where R is a random number with truncated limits.17,21

The limits of R are truncated such that it will have a
large effect near the bottom of the parabola, where
lDe2k � Dwk in Eq. (11) would be expected to be small,
but a negligible effect at the sides of the parabola,
where lDe2k � Dwk would be expected to be large.
Equation (11) describes the ALOPEX algorithm.
ALOPEX is an acronym for ALgorithm Of Pattern
EXtraction, which refers to its use in pattern recogni-
tion.17,21 Herein, Eq. (11) is used for weight update of a
single reference input, but it can also be used to update
multiple weights j ¼ 1; . . . ; n when there are n reference
inputs.17,21 For added stability, we computed the
ALOPEX weight update using:

wkþ1 ¼ wk � lRkDe2k � RkDwk þ R ð12Þ

where the summation sign Rk denotes that averages of
Dek

2 and Dwk over k = 10 previous iterations was used.

Experiments

The ANC algorithms described in Eq. (9) (PC) and
Eq. (12) (ALOPEX) were tested. The PC algorithm
was implemented with two reference inputs:
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e ¼ d� ðw1x1 þ w2x2Þ ð13Þ

We used a triangle wave (tri) of intermediate period
(k = 25 sample points) to simulate a blood pres-
sure pulse, and sinusoids with longer and shorter
periods (selected as k = 100.5 and 13.2 sample
points so as not to be multiplicatively related to tri)
to simulate common-mode motion artifact and line
frequency interference, respectively. The signal and
common-mode artifact were added to the inputs as
follows:

d ¼:45 trið2pk=25:0Þ þ 2:8 sinð2pk=13:2Þ
þ 2:65 sinð2pk=100:5Þ

ð14aÞ

x1 ¼ 1:4 sinð2pk=13:2Þ þ 2:65 sinð2pk=100:5Þ ð14bÞ

x2 ¼ 5:6 sinð2pk=13:2Þ þ 2:65 sinð2pk=100:5Þ ð14cÞ

where d is the primary input, x1, x2 are reference
inputs, and noises n1 ¼ sinð2pk=13:2Þ and
n2 ¼ sinð2pk=100:5Þ. The noise amplitudes were made
several times larger than that of the signal (Eq. 14a;
SNR�1:6). Weights w1 and w2 were initialized to zero.
For faster convergence, we used two values for the
convergence coefficient l: 0.003 and 0.00003 with the
threshold for change from large to small l being the
point at which the squared error halved from its value
at initialization.

The ALOPEX algorithm was implemented as de-
scribed in Eq. (12). A simulated blood pressure pulse
shape (bpp) was used as the primary signal, with a
common-mode sinusoid added as noise. The signal and
common-mode noise contributions to the inputs were
as follows:

d ¼ 1:7 bppð2pk=80Þ þ 0:7 sinð2pk=28Þ ð15aÞ

x1 ¼ 0:7 sinð2pk=28Þ ð15bÞ

We ran this simulation after initializing weight w1 to
zero and using a value l = 0.001.

The PC and ALOPEX algorithms were then tes-
ted on real data using a single noise cancellation
weight. An electrogram recording acquired from the
epicardial surface of a canine heart during normal
sinus rhythm was used as the cardiovascular signal.
The recording was bipolar and the electrodes were
constructed of 1 mm silver disks attached to silver
wires, with a bipolar electrode spacing of 3.5 mm.
The digitization rate was 1 kHz. Additional details
concerning the data acquisition system used for
recording cardiac electrograms have been described
elsewhere.11

RESULTS

Figure 2 shows the signals used for the PC algo-
rithm simulation. The primary input d is the larger
signal and it is composed of noise components with
periods T = 13.5 and T = 100.5 sample points in
addition to the simulated cardiovascular signal with
period T = 25 sample points (see Eq. 14). The error
signal e was computed from Eq. (9) formulated for a
two weight system. Since the weights are adaptively
updated, ideally they will converge so that the triangle
component of the primary (the simulated cardiovas-
cular signal), which is not common-mode, will appear
at the error signal without additive noise. Convergence
using the PC algorithm required approximately 100
iterations (100 sample points) for the signal amplitudes
shown. Some common-mode noise still appears on the
ANC (i.e., error) signal, however its SNR� 1 and it is
stable over time.

In Fig. 3 the path of weights w1 and w2 for con-
vergence are shown. Each point in the scatterplot de-
notes an iterative weight update. Initially both weights
were set to zero. The weight update involves large steps
at first (larger spacing between points), and then pro-
gressively smaller steps (smaller spacing between
points) toward convergence to the optimal weighting.
Upon convergence, w1 = 0.66 and w2 = 0.34; with
this combination of weights:

0:66 � x1 þ 0:34 � x2 �2:8 sinð2pt=13:2Þ
þ 2:65 sinð2pt=100:5Þ

Thus the weighted sum of the two reference inputs
x1 and x2, upon convergence, approximately equals
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FIGURE 2. Signals used for parallel comparison (PC) test-
ing. The desired signal d (large deflections, black) and error
signal e (smaller deflections, gray) are shown. Complete
convergence occurs at approximately the 100th iteration (100
sample points).
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and therefore will cancel by subtraction the additive
noise on the primary input (Eq. 14a). The lines in
Fig. 3 show how the gains are related for common-
mode noise cancellation. The line extending from
w1 = 2 to w2 = 0.5 shows the value of the weights
that will completely cancel the common-mode noise
sin(2p t/13.2) (Eq. 14). The line extending from w1 = 1
to w2 = 1 shows the value of the weights that will
completely cancel the common-mode noise sin(2p t/
100.5) (Eq. 14). From an initialized weighting of zero,
during the update process the weights converge to the
line in which the common-mode noise sin(2p t/13.2) is
completely cancelled. Upon arrival at this line, further
adaptive update involves converging to the second line
(optimal cancellation of the common-mode noise
sin(2p t/100.5)) while approximately maintaining
optimal cancellation of the other common-mode noise.

In Fig. 4, the signals used for the ALOPEX algo-
rithm simulation are shown. The simulated blood
pressure trace is at the center. The desired signal is
offset at the top of the figure. Although the main
features of the simulated pulse can still be observed
(systolic and diastolic components and dicrotic notch)
they are skewed and probably unusable for quantita-
tive or even qualitative analysis. The error signal, being
the signal + noise with ANC, is shown offset at the
bottom of the figure. Much of the noise artifact is re-
moved. Small ripples are caused by flux of the
weighting about a locus centered upon the optimal
weight value.

Figure 5 shows the convergence process for the
signals of Fig. 4, based on Eq. (12). Initially, because

the weighting is not optimal, the squared error term
RkDe2k is large. It is also pulsatile because the window
Rk slides across a periodic signal. Its amplitude is also
relatively large initially since the weighting for cancel-
lation of common-mode artifacts is initially incorrect.
As the weights converge to optimal, the RkDe2k
decreases in value and its amplitude diminishes. Upon
convergence after �2000 sample points, the mean
RkDe2k remains constant and contains only a small
pulsative component.

The ALOPEX and PC algorithms were then tested
on canine electrogram data. In Fig. 6a is shown the
recorded electrogram signal over a 1600 ms interval.
The heart rate, which was in sinus rhythm but rapid, is
�3/s (period T� 325 ms). An 18 Hz triangle wave (T �
55 ms) with an amplitude of 2 mV was added as noise.
The signal + noise is shown in panel (b), and the
signal itself is completely embedded in the noise except
at the times of the two largest peak deflections from
panel (a), where two small deflections can be observed.
Noise cancellation using ALOPEX is shown in panel
(c). The weight was initialized at wo = 1.5, with con-
stant convergence coefficient l = 0.3, and a Gaussian
random number R truncated at ±1E)4. Convergence
to the optimal weighting is complete before 100 ms.
Only a short segment of the triangle wave noise ap-
pears in panel (c) prior to convergence. The result of
the PC algorithm when used for adaptive noise can-
cellation on the same signal + noise is shown in panel
(d). The parameters included an initial weighting
wo = 1.5, with a constant finite difference
±x = ±0.01 and constant convergence coeffi-
cient l = 0.01. The PC algorithm took slightly longer
to converge than ALOPEX, but was still complete in
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�100 ms. Both algorithms show stability for noise
cancellation even though the signal is highly pulsatile
(panel (a)) and the SNR is initially �1:5 (panel (b)).

In Fig. 7a is shown a longer sequence of the elec-
trogram signal used for processing, and below it is
shown the frequency spectrum (Fig. 7b). The electro-
gram signal with additive noise is shown in Fig. 7c,
and in Fig. 7d its frequency spectrum is shown,

centered on 18 Hz. In Fig. 8 is shown sequences of the
ANC (i.e., error) signal for ALOPEX (Fig. 8) and for
the PC algorithm (Fig. 8), with their respective
frequency spectra beneath (panels (b) and (d)). The
frequency spectra are similar, although not the same.
They mainly differ in that the PC algorithm harmonics
are slightly less than those for the ALOPEX algorithm.
The frequency spectrum when ALOPEX is used for
ANC (Fig. 8b) most resembles the original frequency
spectrum of the signal (Fig. 7b).

DISCUSSION

In this study two algorithms were tested for their
ability to cancel common-mode noise in cardiovascular
signals. The algorithms are rooted in the equation for
steepest descent but modified to allow difference
equations to approximate the MSE gradient. Stability
is maintained by preventing Dw fi 0 in the denomi-
nator.

Convergence to the Optimal Weighting

Pulsatile and periodic signals, along with several
additive common mode noise components, were used
to test the PC and ALOPEX algorithms, and in each
case convergence was rapid and stability was main-
tained. In the case of real data, the electrogram signal
used for ANC testing was pulsatile with varying
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amplitude and slightly varying rate (Fig. 7a). Yet, the
stability of both algorithms for ANC was maintained
at instances when large deflections occurred as well as
during the intervening intervals (Fig. 8). The actual
speed of convergence and stability of these ANC
algorithms depend on the magnitude and interrela-
tionships of the weight update parameters as well as
the characteristics of the signal and noise. The PC
algorithm uses finite differences in squared error to
estimate the gradient in parallel during each time
epoch, while the ALOPEX algorithm computes the
squared error difference between successive time
epochs to estimate the gradient. Since they rely upon
differing methods for weight update, use of identical
convergence coefficients for each would not be ex-
pected to result in identical rate of convergence nor the
same degree of stability.

Figure 3 shows the convergence of the PC algorithm
when using a two reference input (and two-weight)
system. It reveals an interesting property of the con-
vergence process. One of the additive noises is com-
pletely cancelled by the two-weight system when their
values reside anywhere along either of the lines. Both
of the additive noises are completely cancelled at the
intersection of these lines, which is thus the point of
optimal weighting. From an initial weighting of
w1 = 0, w2 = 0, the update process converges first so

as to completely cancel noise n1 (the approach of the
weight update, as represented by the points in the
scatterplot, is approximately perpendicular to the line).
There is then some overshoot toward the line at which
complete cancellation of noise n2 occurs. However,
eventually the update centers again about the noise n1
line and is directed toward the intersection of the lines.
Near the intersection there is greater scatter because
convergence then alternates between the two lines.
These observations are in accord with the fact that the
amplitude of noise n1 is somewhat greater than noise n2
(Eq. 14) and thus it makes a greater contribution to the
squared error (greater squared contribution to the
weight update).

During the ALOPEX simulation (Figs. 4 and 5),
portions of the shape of the simulated cardiovascular
signal (the systolic peak and the secondary peak fol-
lowing the dicrotic notch) were similar in amplitude
and width to the additive noise that can be observed to
be riding on the signal in the top trace of Fig. 4. The
similarity of signal and noise at these moments would
suggest that the algorithm might attempt to converge
the weights so as to cancel the two major peaks of the
primary rather than the common-mode artifact. Yet as
the bottom trace in Fig. 4 illustrates, upon conver-
gence the simulated blood pressure signal is mostly
restored. If however the period of the common-mode

FIGURE 7. Signal and noise time series and frequency spectra. (a) Signal is shown over an interval of 12.4 s (first 1.6 s are shown
expanded in Fig. 6a); (b) Frequency spectrum of this signal (first 8192 sample points); (c) Signal + noise (first 1.6 s are shown
expanded in Fig. 6b); and (d) Frequency spectrum of the signal + noise.
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artifact were such that its peaks always aligned with
the peaks of the simulated blood pressure signal (i.e., if
these signals were correlated), some cancellation of the
blood pressure pulse signal would occur. This point
emphasizes a requirement for adaptive algorithms such
as these, that the common-mode artifact be uncorre-
lated with respect to the biomedical signal being fil-
tered. Additionally there are three downward spikes in
the squared error after 2000 sample points (Fig. 5).
The downward spikes must be the result of some
cancellation of the pulse itself and are caused by a
transient similarity of the pulse signal to the weighted
common-mode reference signal. However after com-
plete convergence at �4000 sample points, no such
spikes occurred.

Although the common-mode noise was adaptively
cancelled in these simulations, difference algorithms
for gradient descent can also be used for adaptive
pattern matching (APM)22,23. In pattern matching
mode a template, or model signal, is weighted to adjust
its form for best fit with an input signal based on the
mean squared error or some other criterion of simi-
larity.5,7,8,12–14 At convergence to the optimal weight-
ing, the final weighting is a quantitative measure of the
degree of similarity between the two signals. APM has
been shown to be useful in cardiovascular research for
prediction of the location of reentrant ventricular

tachycardia7,8,12–14 and for region-finding in biomedi-
cal magnetic resonance images.5 In fact, ANC can be
considered to be a special case of APM in which the
pattern (reference signal) is matched to the input (de-
sired signal) discrete point by discrete point for an
indefinite interval.5,7,8,12–14 The error signal when
convergence is complete is a measure of the dissimi-
larity (uncorrelated components) between pattern and
input.

Difference Algorithms versus LMS

Perhaps the most commonly used algorithm for
adaptive noise cancellation and for some forms of
pattern matching is the Least Mean Squares (LMS)
algorithm25,27–29:

wkþ1 ¼ wk � 2lekxk ð16Þ

Advantages of LMS include ease of implementation,
and optimal performance under practical condi-
tions.25,27–29 Thus, the LMS algorithm has enjoyed
widespread application. The average performance of
LMS is equal to that of Newton’s method when both
algorithms are tested with statistically nonstationary
input signals.26 Yet, the convergence coefficient l for
LMS must be carefully selected to prevent instability in
the weight adjustment and to prevent cancellation of

FIGURE 8. ANC signals using ALOPEX and PC algorithms, time series and frequency spectra. (a) Restored signal with ANC using
ALOPEX; (b) Frequency spectrum; (c) Restored signal with ANC using the PC algorithm; and (d) Frequency spectrum. First 1.6 s of
panels (a) and (c) are also shown in Fig. 6 panels (c) and (d), respectively.
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signal components as well as common-mode noise.
Although the weight update can be normalized by
dividing the right-hand-term in Eq. (16) by the refer-
ence signal average, that average is computed over a
predefined interval. Thus, transient spikes and sharp
shifts in the signal baseline may not immediately be
accounted for in the normalization process. This in-
creases the probability that sudden changes in the
performance surface will be erroneously interpreted as
requiring a drastic change of weighting, causing can-
cellation of portions of the signal itself as well as
common-mode noise, and/or incorrectly weighting the
common-mode noise component after weight adjust-
ment to account for the transient spike or sharp
baseline shift.

Typically, LMS relies on a single reference input
which is shifted by increments of one sample point to
provide delayed inputs (tapped delay line) for cancel-
lation of common-mode noise with phase adjust-
ment,25,27–29 but this presupposes that a single
reference input accounts for all common-mode noise
components and the relationship between them. In
contrast, the ANC algorithms described herein can use
multiple reference inputs, potentially increasing sta-
bility, and more accurately representing common-
mode noise present on the desired signal. Use of mul-
tiple references would be expected to reduce the effect
of a transient uncorrelated spike or baseline shift
occurring on any one of them, because it is their
summation (and thus weighted average) that forms the
subtractive component for ANC. These algorithms
were also shown to converge rapidly even for a SNR > 1.

ALOPEX has been used previously for rapid and
stable convergence in a variety of settings including
combinatorial optimization,19 pattern matching,1 fuz-
zy clustering of auditory neuronal responses,4 detec-
tion of multiple sclerosis with visual evoked
potentials,15 and blood cell identification using neural
networks.20 When multiple reference inputs are used
for image processing, parallel processing elements can
be incorporated, one for each input, to speed conver-
gence.18 Herein, ALOPEX was shown to be useful for
adaptive noise cancellation under conditions of SNR
> 1. Incorporation of multiple reference inputs would
be expected to increase the SNR of the filter output
(error signal) while minimally increasing convergence
time.

Limitations and Future Directions

The simulations that were provided may not pre-
cisely mimic neither actual cardiac signals nor com-
mon-mode noise. Thus, the PC and ALOPEX
algorithms may not perform as well (in terms of speed
of convergence, or in terms of stability to large oscil-

lations in noise cancellation weights) when they are
used for ANC with certain real signals. Yet, the com-
mon-mode artifacts on each input were relatively large
and of varied frequency, suggesting that these algo-
rithms are robust to variations in signal and noise
characteristics and to statistical nonstationarity. In the
tests, a DC offset or bias was not added to the signals.
Had a bias been added to the primary and/or the ref-
erence signals for either the PC or ALOPEX methods,
another reference input composed of DC signal only
would be required for complete cancellation of the
bias. The bias reference input xb would be set to an
arbitrary and constant value such as unity (xb = 1).

The PC and ALOPEX algorithms as written do not
adjust for phasic differences between the common-
mode noises on each input. Phase shifts can occur for a
variety of reasons and cause delay in the arrival of
common mode components at one input with respect
to another.2,3 By using a tapped delay line25,27–29 for
each of the reference inputs, it would be possible to
cancel common-mode artifact with phase shift, the
subject of future research. A comparison of ANC
algorithms to frequency domain filters is also a subject
for future study.
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